Diagnosis and Management of Beckwith-Wiedemann Syndrome (2024)

1. Choufani S, Shuman C, Weksberg R.Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet. (2010) 154:343–54. 10.1002/ajmg.c.30267 [PubMed] [CrossRef] [Google Scholar]

2. Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al.. Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. (2018) 14:229–49. 10.1038/nrendo.2017.166 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Duffy KA, Cielo CM, Cohen JL, Gonzalez-Gandolfi CX, Griff J, Hathaway ER, et al.. Characterization of the Beckwith-Wiedemann spectrum: diagnosis and management. Am J Med Genet Part C. (2019)181:693–708. 10.1002/ajmg.c.31740 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Mussa A, Di Candia S, Russo S, Catania S, De Pellegrin M, Di Luzio L, et al.. Recommendations of the Scientific Committee of the Italian Beckwith-Wiedemann syndrome association on the diagnosis, management and follow-up of the syndrome. Eur J Med Genet. (2016) 59:52–64. 10.1016/j.ejmg.2015.11.008 [PubMed] [CrossRef] [Google Scholar]

5. Mussa A, Molinatto C, Cerrato F, Palumbo O, Carella M, Baldassarre G, et al.. Assisted reproductive techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics. (2017) 140:e20164311. 10.1542/peds.2016-4311 [PubMed] [CrossRef] [Google Scholar]

6. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. (2003) 72:156–60. 10.1086/346031 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Halliday J, Oke K, Breheny S, Algar E, Amor DJ. Beckwith-Wiedemann Syndrome and IVF: a Case-Control Study. Am J Hum Genet. (2004) 75:526–8. 10.1086/423902 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Alders M, Maas SM, Kadouch DJM, van der Lip K, Bliek J, van der Horst CMAM, et al.. Methylation analysis in tongue tissue of BWS patients identifies the (EPI)genetic cause in 3 patients with normal methylation levels in blood. Eur J Med Genet. (2014) 57:293–7. 10.1016/j.ejmg.2014.03.011 [PubMed] [CrossRef] [Google Scholar]

9. Leibovitch MP, Nguyen VC, Gross MS, Solhonne B, Leibovitch SA, Bernheim A. The human ASM (Adult Skeletal Muscle) gene: expression and chromosomal assignment to 11p15. Biochem Biophys Res Commun. (1991) 180:1241–50. 10.1016/S0006-291X(05)81329-4 [PubMed] [CrossRef] [Google Scholar]

10. Jinno Y, Ikeda Y, Yun K, Maw M, Masuzaki H, f*ckada H, et al.. Establishment of functional imprinting of the H19 gene in human developing placentae. Nat Genet. (1995) 10:318–24. 10.1038/ng0795-318 [PubMed] [CrossRef] [Google Scholar]

11. Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, et al.. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA. (2008) 105:12417–22. 10.1073/pnas.0801540105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Monk D, Sanches R, Arnaud P, Apostolidou S, Hills FA, Abu-Amero S, et al.. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet. (2006) 15:1259–69. 10.1093/hmg/ddl041 [PubMed] [CrossRef] [Google Scholar]

13. Constância M, Dean W, Lopes S, Moore T, Kelsey G, Reik W. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat Genet. (2000) 26:203–6. 10.1038/79930 [PubMed] [CrossRef] [Google Scholar]

14. Drewell RA, Brenton JD, Ainscough JF, Barton SC, Hilton KJ, Arney KL, et al.. Deletion of a silencer element disrupts H19 imprinting independently of a DNA methylation epigenetic switch. Development. (2000) 127:3419–28. Available online at: https://dev.biologists.org/content/127/16/3419.long [PubMed] [Google Scholar]

15. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. (2000) 405:486–9. 10.1038/35013106 [PubMed] [CrossRef] [Google Scholar]

16. Kalish JM, Jiang C, Bartolomei MS. Epigenetics and imprinting in human disease. Int J Dev Biol. (2014) 58:291–8. 10.1387/ijdb.140077mb [PubMed] [CrossRef] [Google Scholar]

17. Korostowski L, Sedlak N, Engel N.The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. (2012) 8:e1002956 10.1371/journal.pgen.1002956 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, et al.. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet. (2012) 21:10–25. 10.1093/hmg/ddr419 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Jacob KJ, Robinson WP, Lefebvre L. Beckwith-Wiedemann and Silver-Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet. (2013) 84:326–34. 10.1111/cge.12143 [PubMed] [CrossRef] [Google Scholar]

20. Cerrato F, Vernucci M, Pedone PV, Chiariotti L, Sebastio G, Bruni CB, et al.. The 5' end of the KCNQ1OT1 gene is hypomethylated in the Beckwith-Wiedemann syndrome. Hum Genet. (2002) 111:105–7. 10.1007/s00439-002-0751-1 [PubMed] [CrossRef] [Google Scholar]

21. Mancini-DiNardo D, Steele SJS, Ingram RS, Tilghman SM. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum Mol Genet. (2003) 12:283–94. 10.1093/hmg/ddg024 [PubMed] [CrossRef] [Google Scholar]

22. Weaver JR, Susiarjo M, Bartolomei MS. Imprinting and epigenetic changes in the early embryo. Mamm Genome. (2009) 20:532–43. 10.1007/s00335-009-9225-2 [PubMed] [CrossRef] [Google Scholar]

23. Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes. (2014) 21:30–8. 10.1097/MED.0000000000000037 [PubMed] [CrossRef] [Google Scholar]

24. Eggermann T, Algar E, Lapunzina P, Mackay D, Maher ER, Mannens M, et al.. Clinical utility gene card for: Beckwith-Wiedemann Syndrome. Eur J Hum Genet. (2014) 22:435. 10.1038/ejhg.2013.132 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Choufani S, Shuman C, Weksberg R.Molecular findings in Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet. (2013) 163:131–40. 10.1002/ajmg.c.31363 [PubMed] [CrossRef] [Google Scholar]

26. Romanelli V, Meneses HNM, Fernández L, Martínez-Glez V, Gracia-Bouthelier R, F Fraga M, et al.. Beckwith–Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques. Eur J Hum Genet. (2011) 19:416–21. 10.1038/ejhg.2010.236 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Conlin LK, Thiel BD, Bonnemann CG, Medne L, Ernst LM, Zackai EH, et al.. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum Mol Genet. (2010) 19:1263–75. 10.1093/hmg/ddq003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Cooper WN, Curley R, Macdonald F, Maher ER. Mitotic recombination and uniparental disomy in Beckwith–Wiedemann syndrome. Genomics. (2007) 89:613–7. 10.1016/j.ygeno.2007.01.005 [PubMed] [CrossRef] [Google Scholar]

29. Brioude F, Netchine I, Praz F, Le Jule M, Calmel C, Lacombe D, et al.. Mutations of the imprinted CDKN1C gene as a cause of the overgrowth Beckwith–Wiedemann Syndrome: clinical spectrum and functional characterization. Hum Mutat. (2015) 36:894–902. 10.1002/humu.22824 [PubMed] [CrossRef] [Google Scholar]

30. Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, et al.. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet. (2002) 11:1317–25. 10.1093/hmg/11.11.1317 [PubMed] [CrossRef] [Google Scholar]

31. Cohen JL, Duffy KA, Sajorda BJ, Hathaway ER, Gonzalez-Gandolfi CX, Richards-Yutz J, et al.. Diagnosis and management of the phenotypic spectrum of twins with Beckwith-Wiedemann syndrome. Am J Med Genet A. (2019) 179:1139–47. 10.1002/ajmg.a.61164 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Hall JG, Lopez-Rangel E. Embryologic development and monozygotic Twinning. Acta Genet Med Gemellol. (1996) 45:53–7. 10.1017/S0001566000001094 [PubMed] [CrossRef] [Google Scholar]

33. Machin GA. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Am J Med Genet. (1996) 61:216–28. 10.1002/(SICI)1096-8628(19960122)61:3<216::AID-AJMG5>3.0.CO;2-S~34 [PubMed] [CrossRef] [Google Scholar]

34. Cox GF, Bürger J, Lip V, Mau UA, Sperling K, Wu B-L, et al.. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. (2002) 71:162–4. 10.1086/341096 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Eggermann K, Bliek J, Brioude F, Algar E, Buiting K, Russo S, et al.. EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver-Russell and Beckwith-Wiedemann syndrome. Eur J Hum Genet. (2016) 24:1377–87. 10.1038/ejhg.2016.45 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Russo S, Calzari L, Mussa A, Mainini E, Cassina M, Di Candia S, et al.A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin Epigenet. (2016) 8:23 10.1186/s13148-016-0183-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Priolo M, Sparago A, Mammì C, Cerrato F, Laganà C, Riccio A. MS-MLPA is a specific and sensitive technique for detecting all chromosome 11p15.5 imprinting defects of BWS and SRS in a single-tube experiment. Eur J Hum Genet. (2008) 16:565–71. 10.1038/sj.ejhg.5202001 [PubMed] [CrossRef] [Google Scholar]

38. Scott RH, Douglas J, Baskcomb L, Nygren AO, Birch JM, Cole TR, et al.. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) robustly detects and distinguishes 11p15 abnormalities associated with overgrowth and growth retardation. J Med Genet. (2007) 45:106–13. 10.1136/jmg.2007.053207 [PubMed] [CrossRef] [Google Scholar]

39. Coffee B, Muralidharan K, Highsmith WE, Jr, Lapunzina P, Warren ST. Molecular diagnosis of Beckwith-Wiedemann syndrome using quantitative methylation-sensitive polymerase chain reaction. Genet Med. (2006) 8:628–34. 10.1097/01.gim.0000237770.42442.cc [PubMed] [CrossRef] [Google Scholar]

40. Azzi S, Steunou V, Rousseau A, Rossignol S, Thibaud N, Danton F, et al.. Allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), a powerful method for diagnosing loss of imprinting of the 11p15 region in Russell Silver and Beckwith Wiedemann syndromes. Hum Mutat. (2010) 32:249–58. 10.1002/humu.21403 [PubMed] [CrossRef] [Google Scholar]

41. Liu W, Zhang R, Wei J, Zhang H, Yu G, Li Z, et al.. Rapid diagnosis of imprinting disorders involving copy number variation and uniparental disomy using Genome-Wide SNP Microarrays. Cytogenet Genome Res. (2015) 146:9–18. 10.1159/000435847 [PubMed] [CrossRef] [Google Scholar]

42. Keren B, Chantot-Bastaraud S, Brioude F, Mach C, Fonteneau E, Azzi S, et al.. SNP arrays in Beckwith–Wiedemann syndrome: an improved diagnostic strategy. Eur J Med Genet. (2013) 56:546–50. 10.1016/j.ejmg.2013.06.005 [PubMed] [CrossRef] [Google Scholar]

43. Inbar-Feigenberg M, Choufani S, Cytrynbaum C, Chen YA, Steele L, Shuman C, et al.. Mosaicism for genome-wide paternal uniparental disomy with features of multiple imprinting disorders: diagnostic and management issues. Am J Med Genet A. (2013) 161A:13–20. 10.1002/ajmg.a.35651 [PubMed] [CrossRef] [Google Scholar]

44. Lam W, Hatada I, Ohishi S, Mukai T, Joyce J, Cole T, et al.Analysis of germline CDKN1C (p57(KIP2)) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet. (1999) 36:518–23. [PMC free article] [PubMed] [Google Scholar]

45. Baskin B, Choufani S, Chen Y-A, Shuman C, Parkinson N, Lemyre E, et al.. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet. (2013) 133:321–30. 10.1007/s00439-013-1379-z [PubMed] [CrossRef] [Google Scholar]

46. Bi W, Borgan C, Pursley AN, Hixson P, Shaw CA, Bacino CA, et al.. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today's genomic array era? Genet Med. (2012) 15:450–7. 10.1038/gim.2012.152 [PubMed] [CrossRef] [Google Scholar]

47. Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet. (2004) 36:958–60. 10.1038/ng1410 [PubMed] [CrossRef] [Google Scholar]

48. Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, et al.. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet. (2009) 19:803–14. 10.1093/hmg/ddp549 [PubMed] [CrossRef] [Google Scholar]

49. Sparago A, Russo S, Cerrato F, Ferraiuolo S, Castorina P, Selicorni A, et al.. Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour. Hum Mol Genet. (2007) 16:254–64. 10.1093/hmg/ddl448 [PubMed] [CrossRef] [Google Scholar]

50. Poole RL, Leith DJ, Docherty LE, Shmela ME, Gicquel C, Splitt M, et al.. Beckwith-Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1. Eur J Hum Genet. (2012) 20:240–3. 10.1038/ejhg.2011.166 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Azzi S, Rossignol S, Steunou V, Sas T, Thibaud N, Danton F, et al.. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet. (2009) 18:4724–33. 10.1093/hmg/ddp435 [PubMed] [CrossRef] [Google Scholar]

52. Bliek J AM, Maas SM, Oostra RJ, Mackay DM, van der Lip K, Callaway JL, et al.. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet. (2009) 17:1625–34. 10.1038/ejhg.2009.77 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Wojdacz TK, Dobrovic A, Algar EM. Rapid detection of methylation change at H19 in human imprinting disorders using methylation-sensitive high-resolution melting. Hum Mutat. (2008) 29:1255–60. 10.1002/humu.20779 [PubMed] [CrossRef] [Google Scholar]

54. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Gen. (2004) 66:488–95. 10.1111/j.1399-0004.2004.00322.x [PubMed] [CrossRef] [Google Scholar]

55. Keren B.The advantages of SNP arrays over CGH arrays. Mol Cytogenet. (2014) 7(Suppl. 1):I31 10.1186/1755-8166-7-S1-I31 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Demars J, Rossignol S, Netchine I, Lee KS, Shmela M, Faivre L, et al.. New insights into the pathogenesis of beckwith–wiedemann and silver–russell syndromes: contribution of small copy number variations to 11p15 imprinting defects. Hum Mutat. (2011) 32:1171–82. 10.1002/humu.21558 [PubMed] [CrossRef] [Google Scholar]

57. Kearney L. Molecular cytogenetics. Best Pract Res Cl Ha. (2001) 14:645–68. 10.1053/beha.2001.0159 [PubMed] [CrossRef] [Google Scholar]

58. Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA. (1986) 83:2934–8. 10.1073/pnas.83.9.2934 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Eggermann T, Brioude F, Russo S, Lombardi MP, Bliek J, Maher ER, et al.. Prenatal molecular testing for Beckwith–Wiedemann and Silver–Russell syndromes: a challenge for molecular analysis and genetic counseling. Eur J Hum Genet. (2015) 24:784–93. 10.1038/ejhg.2015.224 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Paganini L, Carlessi N, Fontana L, Silipigni R, Motta S, Fiori S, et al.. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics. (2015) 10:643–9. 10.1080/15592294.2015.1057383 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Mussa A, Russo S, De Crescenzo A, Freschi A, Calzari L, Maitz S, et al.. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet. (2016) 24:183–90. 10.1038/ejhg.2015.88 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Maas S, Vansenne F, Kadouch D, Ibrahim A, Bliek J, Hopman S, et al.. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A. (2016) 170:2248–60. 10.1002/ajmg.a.37801 [PubMed] [CrossRef] [Google Scholar]

63. Ibrahim A, Kirby G, Hardy C, Dias RP, Tee L, Lim D, et al.. Methylation analysis and diagnostics of Beckwith-Wiedemann syndrome in 1,000 subjects. Clin Epigenet. (2014) 6:11. 10.1186/1868-7083-6-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Kagan KO, Berg C, Dufke A, Geipel A, Hoopmann M, Abele H. Novel fetal and maternal sonographic findings in confirmed cases of Beckwith–Wiedemann syndrome. Prenatal Diagn. (2015) 35:394–9. 10.1002/pd.4555 [PubMed] [CrossRef] [Google Scholar]

65. Guanciali-Franchi P, Di Luzio L, Iezzi I, Celentano C, Matarrelli B, Liberati M, et al.. Elevated maternal serum α-fetoprotein level in a fetus with Beckwith-Wiedemann syndrome in the second trimester of pregnancy. J Prenat Med. (2012) 6:7–9. [PMC free article] [PubMed] [Google Scholar]

66. Wangler MF, An P, Feinberg AP, Province M, DeBaun MR.Inheritance pattern of Beckwith–Wiedemann syndrome is heterogeneous in 291 families with an affected proband. Am J Med Genet A. (2005) 137A:16–21. 10.1002/ajmg.a.30827 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Mussa A, Russo S, De Crescenzo A, Freschi A, Calzari L, Maitz S, et al.. Fetal growth patterns in Beckwith-Wiedemann syndrome. Clin Genet. (2016) 90:21–7. 10.1111/cge.12759 [PubMed] [CrossRef] [Google Scholar]

68. Kalish JM, Boodhansingh KE, Bhatti TR, Ganguly A, Conlin LK, Becker SA, et al.. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J Med Genet. (2016) 53:53–61. 10.1136/jmedgenet-2015-103394 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Kadouch DJM, Maas SM, Dubois L, van der Horst CMAM. Surgical treatment of macroglossia in patients with Beckwith–Wiedemann syndrome: a 20-year experience and review of the literature. Int J Oral Maxillofac Surg. (2012) 41:300–8. 10.1016/j.ijom.2011.10.021 [PubMed] [CrossRef] [Google Scholar]

70. Shipster C, Morgan A, Dunaway D. Psychosocial, feeding, and drooling outcomes in children with Beckwith Wiedemann Syndrome following tongue reduction surgery. Cleft Palate Craniofac J. (2012) 49:25–34. 10.1597/10-232 [PubMed] [CrossRef] [Google Scholar]

71. Shipster C, Oliver B, Morgan A.Speech and oral motor skills in children with Beckwith Wiedemann Syndrome: pre- and post-tongue reduction surgery. Adv Speech Lang Pathol. (2006) 8:45–55. 10.1080/14417040500484401 [CrossRef] [Google Scholar]

72. Cielo CM, Duffy KA, Vyas A, Taylor JA, Kalish JM. Obstructive sleep apnoea and the role of tongue reduction surgery in children with Beckwith-Wiedemann syndrome. Paediatr Respir Rev. (2017) 25:58–63. 10.1016/j.prrv.2017.02.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Brioude F, Lacoste A, Netchine I, Vazquez MP, Auber F, Audry G, et al.. Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr. (2013) 80:457–65. 10.1159/000355544 [PubMed] [CrossRef] [Google Scholar]

74. Ghanem I, Karam JA, Widmann RF. Surgical epiphysiodesis indications and techniques: update. Curr Opin Pediatr. (2011) 23:53–9. 10.1097/MOP.0b013e32834231b3 [PubMed] [CrossRef] [Google Scholar]

75. Mussa A, Molinatto C, Baldassarre G, Riberi E, Russo S, Larizza L, et al.. Cancer risk in Beckwith-Wiedemann Syndrome: a systematic review and meta-analysis outlining a novel (epi)genotype specific histotype targeted screening protocol. J Pediatr. (2016) 176:142–9. 10.1016/j.jpeds.2016.05.038 [PubMed] [CrossRef] [Google Scholar]

76. Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al.. Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet. (2005) 13:1025–32. 10.1038/sj.ejhg.5201463 [PubMed] [CrossRef] [Google Scholar]

77. Duffy KA, Deardorff MA, Kalish JM. The utility of alpha-fetoprotein screening in Beckwith-Wiedemann syndrome. Am J Med Genet A. (2017) 173:581–4. 10.1002/ajmg.a.38068 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Kalish JM, Conlin LK, Bhatti TR, Dubbs HA, Harris MC, Izumi K, et al.. Clinical features of three girls with mosaic genome-wide paternal uniparental isodisomy. Am J Med Genet A. (2013) 161A:1929–39. 10.1002/ajmg.a.36045 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Wilson M, Peters G, Bennetts B, McGillivray G, Wu ZH, Poon C, et al.. The clinical phenotype of mosaicism for genome-wide paternal uniparental disomy: two new reports. Am J Med Genet A. (2008) 146A:137–48. 10.1002/ajmg.a.32172 [PubMed] [CrossRef] [Google Scholar]

80. Bliek J, Maas S, Alders M, Merks JH, Mannens M. Epigenotype, phenotype, and tumors in patients with isolated hemihyperplasia. J Pediatr. (2008) 153:95–100. 10.1016/j.jpeds.2007.12.022 [PubMed] [CrossRef] [Google Scholar]

81. Kalish JM, Doros L, Helman LJ, Hennekam RC, Kuiper RP, Maas SM, et al.. Surveillance recommendations for children with overgrowth syndromes and predisposition to wilms tumors and hepatoblastoma. Clin Cancer Res. (2017) 23:e115–22. 10.1158/1078-0432.CCR-17-0710 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mosse YP, Nakagawara A, et al.. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. (2017) 23:e98–106. 10.1158/1078-0432.CCR-17-0652 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Mussa A, Ferrero GB. Screening hepatoblastoma in beckwith-wiedemann syndrome: a complex issue. J Pediatr Hematol Oncol. (2015) 37:627. 10.1097/MPH.0000000000000408 [PubMed] [CrossRef] [Google Scholar]

84. Everman DB, Shuman C, Dzolganovski B, O'Riordan M A, Weksberg R, Robin NH. Serum alpha-fetoprotein levels in Beckwith-Wiedemann syndrome. J Pediatr. (2000) 137:123–7. 10.1067/mpd.2000.106217 [PubMed] [CrossRef] [Google Scholar]

85. Blohm ME, Vesterling-Horner D, Calaminus G, Gobel U. Alpha 1-fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr Hematol Oncol. (1998) 15:135–42. 10.3109/08880019809167228 [PubMed] [CrossRef] [Google Scholar]

86. Czauderna P, Lopez-Terrada D, Hiyama E, Haberle B, Malogolowkin MH, Meyers RL. Hepatoblastoma state of the art: pathology, genetics, risk stratification, and chemotherapy. Curr Opin Pediatr. (2014) 26:19–28. 10.1097/MOP.0000000000000046 [PubMed] [CrossRef] [Google Scholar]

87. Allan BJ, Parikh PP, Diaz S, Perez EA, Neville HL, Sola JE. Predictors of survival and incidence of hepatoblastoma in the paediatric population. HPB. (2013) 15:741–6. 10.1111/hpb.12112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Blair JI, Carachi R, Gupta R, Sim FG, McAllister EJ, Weston R. Plasma alpha fetoprotein reference ranges in infancy: effect of prematurity. Arch Dis Child. (1987) 62:362–9. 10.1136/adc.62.4.362 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Duffy KA, Cohen JL, Elci OU, Kalish JM.Development of serum a-fetoprotein norms in Beckwith-Weidemann spectrum. J Pediatr. (2019) 212:195–200. 10.1016/j.jpeds.2019.05.051 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Chung EM, Cube R, Lewis RB, Conran RM. From the archives of the AFIP: pediatric liver masses: radiologic-pathologic correlation part 1. Radiographics. (2010) 30:801–26. 10.1148/rg.303095173 [PubMed] [CrossRef] [Google Scholar]

91. Chung EM, Lattin GE, Cube R, Lewis RB, Marichal-Hernández C, Shawhan R, et al.. From the archives of the AFIP: pediatric liver masses: radiologic-pathologic correlation part 2. RadioGraphics. (2011) 31:483–507. 10.1148/rg.312105201 [PubMed] [CrossRef] [Google Scholar]

92. Clericuzio CL, Chen E, McNeil DE, O'Connor T, Zackai EH, Medne L, et al.Serum alpha-fetoprotein screening for hepatoblastoma in children with Beckwith-Wiedemann syndrome or isolated hemihyperplasia. J Pediatr. (2003) 143:270–2. 10.1067/S0022-3476(03)00306-8 [PubMed] [CrossRef] [Google Scholar]

93. Mussa A, Ferrero GB, Ceoloni B, Basso E, Chiesa N, De Crescenzo A, et al.. Neonatal hepatoblastoma in a newborn with severe phenotype of Beckwith-Wiedemann syndrome. Eur J Pediatr. (2011) 170:1407–11. 10.1007/s00431-011-1455-0 [PubMed] [CrossRef] [Google Scholar]

94. Mussa A, Ciuffreda VP, Sauro P, Pagliardini V, Pagliardini S, Carli D, et al.Longitudinal monitoring of alpha-fetoprotein by dried blood spot for hepatoblastoma screening in Beckwith-Wiedemann syndrome. Cancers. (2019) 11:86 10.3390/cancers11010086 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Porteus MH, Narkool P, Neuberg D, Guthrie K, Breslow N, Green DM, et al.. Characteristics and outcome of children with Beckwith-Wiedemann syndrome and Wilms' tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. (2000) 18:2026–31. 10.1200/JCO.2000.18.10.2026 [PubMed] [CrossRef] [Google Scholar]

96. McNeil DE, Brown M, Ching A, DeBaun MR. Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol. (2001) 37:349–56. 10.1002/mpo.1209 [PubMed] [CrossRef] [Google Scholar]

97. Owens CM, Brisse HJ, Olsen OE, Begent J, Smets AM. Bilateral disease and new trends in Wilms tumour. Pediatr Radiol. (2008) 38:30–9. 10.1007/s00247-007-0681-0 [PubMed] [CrossRef] [Google Scholar]

98. Hamilton TE, Shamberger RC. Wilms tumor: recent advances in clinical care and biology. Semin Pediatr Surg. (2012) 21:15–20. 10.1053/j.sempedsurg.2011.10.002 [PubMed] [CrossRef] [Google Scholar]

99. Goldman M, Smith A, Shuman C, Caluseriu O, Wei C, Steele L, et al.. Renal abnormalities in Beckwith-Wiedemann syndrome are associated with 11p15.5 Uniparental Disomy. J. Am. Soc. Nephrol. (2002) 13:2077. 10.1097/01.ASN.0000023431.16173.55 [PubMed] [CrossRef] [Google Scholar]

100. Goldman M, Shuman C, Weksberg R, Rosenblum ND. Hypercalciuria in Beckwith-Wiedemann syndrome. J Pediatr. (2003) 142:206–8. 10.1067/mpd.2003.82 [PubMed] [CrossRef] [Google Scholar]

101. Greer KJ, Kirkpatrick SJ, Weksberg R, Pauli RM. Beckwith-Wiedemann syndrome in adults: observations from one family and recommendations for care. Am J Med Genet Part A. (2008) 146A:1707–12. 10.1002/ajmg.a.32332 [PubMed] [CrossRef] [Google Scholar]

102. Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet. (1986) 74:143–54. 10.1007/BF00282078 [PubMed] [CrossRef] [Google Scholar]

103. Elliott M, Bayly R, Cole T, Temple IK, Maher ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet. (1994) 46:168–74. 10.1111/j.1399-0004.1994.tb04219.x [PubMed] [CrossRef] [Google Scholar]

104. Gurrieri F, Zollino M, Oliva A, Pascali V, Orteschi D, Pietrobono R, et al.. Mild Beckwith-Wiedemann and severe long-QT syndrome due to deletion of the imprinting center 2 on chromosome 11p. Eur J Hum Genet. (2013) 21:965–9. 10.1038/ejhg.2012.280 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Kaltenbach S, Capri Y, Rossignol S, Denjoy I, Soudée S, Aboura A, et al.. Beckwith–Wiedemann syndrome and long QT syndrome due to familial-balanced translocation t(11;17)(p15.5;q21.3) involving the KCNQ1 gene. Clin Genet. (2013) 84:78–81. 10.1111/cge.12038 [PubMed] [CrossRef] [Google Scholar]

106. Gardiner K, Chitayat D, Choufani S, Shuman C, Blaser S, Terespolsky D, et al.. Brain abnormalities in patients with Beckwith–Wiedemann syndrome. Am J Med Genet Part A. (2012) 158A:1388–94. 10.1002/ajmg.a.35358 [PubMed] [CrossRef] [Google Scholar]

107. Duffy KA, Grand KL, Zelley K, Kalish JM. Tumor screening in Beckwith-Wiedemann syndrome: parental perspectives. J Genet Couns. (2017) 27:844–53. 10.1007/s10897-017-0182-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Kent L, Bowdin S, Kirby GA, Cooper WN, Maher ER. Beckwith Weidemann syndrome: a behavioral phenotype-genotype study. Am J Med Genet B Neuropsychiatr Genet. (2008) 147B:1295–7. 10.1002/ajmg.b.30729 [PubMed] [CrossRef] [Google Scholar]

Diagnosis and Management of Beckwith-Wiedemann Syndrome (2024)

FAQs

How do you diagnose Beckwith-Wiedemann syndrome? ›

BWS may be diagnosed or confirmed shortly after birth based on a thorough clinical evaluation, detection of characteristic physical findings (e.g., increased weight and length, macroglossia, abdominal wall defects) and genetic testing of the BWS critical region.

What is the life expectancy of someone with Beckwith-Wiedemann syndrome? ›

They typically have normal intelligence and normal lifespans. Some of the visible, physical signs of Beckwith-Wiedemann syndrome, such as a disparity in leg length or an enlarged tongue, may require surgical correction, but most of the characteristics become less apparent with time.

What is the Beckwith-Wiedemann syndrome triad? ›

Beckwith-Wiedemann syndrome (BWS) is a growth disorder variably characterized by macroglossia, hemihyperplasia, omphalocele, neonatal hypoglycemia, macrosomia, embryonal tumors (e.g., Wilms tumor, hepatoblastoma, neuroblastoma, and rhabdomyosarcoma), visceromegaly, adrenocortical cytomegaly, kidney abnormalities (e.g., ...

Can you outgrow Beckwith-Wiedemann syndrome? ›

In most cases, the physical abnormalities associated with Beckwith-Wiedemann syndrome (BWS) cannot be "grown out of" as they are caused by structural changes in the body that are present from birth. However, some symptoms of BWS, such as hypoglycemia, may improve or resolve over time as the child grows and develops.

What is the treatment for Beckwith-Wiedemann syndrome? ›

Stomach wall surgery to treat omphalocele or umbilical hernias. Medication can treat hypoglycemia. Tongue reduction surgery to treat macroglossia (large tongue). Orthotics to reduce the appearance of differences in the length of your child's legs.

What are the screening guidelines for Beckwith-Wiedemann syndrome? ›

Tumor screening includes a full abdominal ultrasound every 3 months until age 4 years, and renal ultrasound from age 4-7. Additionally, alpha-fetoprotein screening is recommended every 3 months until age 4 years to screen for development of hepatoblastoma. Importantly, AFP levels may be higher at birth.

What are the long term effects of Beckwith-Wiedemann syndrome? ›

BWS can also lead to an increased risk of certain childhood cancers, most commonly Wilms tumor (kidney tumor) and hepatoblastoma (liver tumor).

Is Beckwith-Wiedemann syndrome serious? ›

Tumors develop in about 10 percent of people with this condition and almost always appear in childhood. Most children and adults with Beckwith-Wiedemann syndrome do not have serious medical problems associated with the condition. Their life expectancy is usually normal.

Which is a common characteristic of Beckwith-Wiedemann syndrome? ›

The most common features of BWS include macrosomia (large body size), macroglossia (large tongue), abdominal wall defects, an increased risk for childhood tumors, kidney abnormalities, hypoglycemia (low blood sugar) in the newborn period, and unusual ear creases or pits.

Does Beckwith-Wiedemann syndrome cause mental retardation? ›

Beckwith–Wiedemann syndrome (BWS) is a rare overgrowth disease and is not usually associated with intellectual delay. Living with a chronic illness condition such as BWS, however, might affect emotional-behavioral functioning and psychosocial development.

Does Beckwith-Wiedemann syndrome affect the brain? ›

Our data suggest that brain malformations may present as a finding within the BWS phenotype when the molecular etiology involves imprinted domain 2. Brain imaging may be useful in identifying such malformations in individuals with BWS and neurodevelopmental issues.

What are the facial features of Beckwith Wiedemann? ›

Conclusions: As intrinsic characteristics of BWS, individuals exhibited macroglossia resulting in an anterior open bite and a wide dental arch. A long facial height and an enlarged anterior cranial base and mandibular body were also noted.

Is Beckwith-Wiedemann syndrome maternal or paternal? ›

Thus, in familial cases, the risk to offspring depends on the sex of the transmitting parent, with maternal transmission associated with greatly increased penetrance. Approximately 20% of sporadic cases demonstrate paternal uniparental disomy (UPD) for chromosome 11p15.

Does Beckwith-Wiedemann syndrome affect speech? ›

One of the most common features of the condition is macroglossia (large tongue size). Macroglossia can cause difficulties with feeding, speech, the development of the teeth and jaws, and increased drooling.

How do you confirm macroglossia? ›

They may use a combination of tests to diagnose macroglossia and any underlying conditions. Those tests may include: Computed tomography (CT) scan. CT scans use a series of X-rays and a computer to create three-dimensional (3D) images of your or your child's mouth, head and neck.

Can Beckwith-Wiedemann syndrome be seen in ultrasound? ›

These cases demonstrate the ultrasound findings existing in this syndrome, as well as the correct diagnostic approach in case of suspicion of this pathology. The detection of macrosomia, macroglossia, omphalocele, nephromegaly, hydramnios, and placental changes should alert to the possibility of BWS.

What are the clinical features of Beckwith-Wiedemann syndrome? ›

Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder that presents with a wide spectrum of clinical features including overgrowth, abdominal wall defects, macroglossia, neonatal hypoglycemia, and predisposition to embryonal tumors.

Top Articles
Latest Posts
Article information

Author: Arline Emard IV

Last Updated:

Views: 6486

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Arline Emard IV

Birthday: 1996-07-10

Address: 8912 Hintz Shore, West Louie, AZ 69363-0747

Phone: +13454700762376

Job: Administration Technician

Hobby: Paintball, Horseback riding, Cycling, Running, Macrame, Playing musical instruments, Soapmaking

Introduction: My name is Arline Emard IV, I am a cheerful, gorgeous, colorful, joyous, excited, super, inquisitive person who loves writing and wants to share my knowledge and understanding with you.